\$50 ELSEVIER Contents lists available at SciVerse ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Degradation of γ -HCH spiked soil using stabilized Pd/Fe⁰ bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

Ritu Singh^{a,d}, Virendra Misra^{a,*}, Mohana Krishna Reddy Mudiam^{b,**}, Lalit Kumar Singh Chauhan^c, Rana Pratap Singh^d

- ^a Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP, India
- ^b Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP, India
- c Petroleum Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP, India
- d Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Lucknow 226 025, UP, India

HIGHLIGHTS

- This study explores the potential of CMC-Pd/nFe⁰ to degrade γ-HCH in spiked soil.
- Sorption-desorption characteristics and partitioning of γ-HCH is investigated.
- ► Three degradation pathways has been proposed and discussed.
- γ-HCH degradation mechanism and kinetics is elucidated.
- Activation energy reveals that γ-HCH degradation is a surface mediated reaction.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history: Received 3 March 2012 Received in revised form 24 August 2012 Accepted 25 August 2012 Available online 1 September 2012

Keywords: γ-HCH Stabilized bimetallic iron nanoparticles Gas chromatography/mass spectrometry Degradation/degradation products Remediation

ABSTRACT

This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ -HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe 0 bimetallic nanoparticles (CMC-Pd/nFe 0). GC-MS analysis of γ -HCH degradation products showed the formation of pentachlorocyclohexene, tri- and dichlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ -HCH has been proposed. Batch studies showed complete γ -HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe 0 within 6 h of incubation. The surface area normalized rate constant (k_{SA}) was found to be 7.6×10^{-2} L min $^{-1}$ m $^{-2}$. CMC-Pd/nFe 0 displayed \sim 7-fold greater efficiency for γ -HCH degradation in comparison to Fe 0 nanoparticles (nFe 0), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe 0 loading and reaction temperature facilitates γ -HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ -HCH concentration and in the presence of cations. The significance of the study with respect to remediation of γ -HCH contaminated soil using CMC-Pd/nFe 0 has been discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Gamma-hexachlorocyclohexane (γ -HCH) commonly known as Lindane, is a broad spectrum insecticide, widely used from 1940s to 1990s throughout the world for agricultural and public health purposes. Owing to its toxicity and persistency, γ -HCH has been

E-mail address: virendra_misra2001@yahoo.co.in (V. Misra).

^{*} Corresponding author. Tel.: +91 0522 2627586; fax: +91 0522 2628227.

^{**} Co-corresponding author.